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Linear and nonlinear viscous flow in two-dimensional fluids
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We report on molecular dynamics simulations of shear viscosity 7 of a dense two-dimensional fluid as
a function of the shear rate y. We find an analytic dependence of 7 on ¥, and do not find any evidence
whatsoever of divergence in the Green-Kubo (GK) value that would be caused by the well-known long-
time tail for the shear-stress autocorrelation function, as predicted by the mode-coupling theory. In ac-
cordance with the linear response theory, the GK value of 7 agrees remarkably well with nonequilibri-

um values at small shear rates.

PACS number(s): 51.20.+d, 61.20.Ja, 66.20.+d

I. INTRODUCTION

The validity of the Green-Kubo (GK) formulas relating
transport coefficients to equilibrium fluctuations, particu-
larly in two dimensions (2D), has been a subject arousing
considerable controversy. After the molecular dynamics
(MD) simulations by Alder and Wainwright [1] that
found the presence of long-time tails, or the persistence of
memory in, for example, the velocity autocorrelation
function (beyond the expected exponential decay on the
order of a mean collision time), mode-coupling theory
was developed [2,3] which predicts a power-law decay of
the form 7 %/2 for the correlation functions, where d is
the dimensionality of the system. This result leads to the
divergence of 2D transport coefficients of the form InN,
where N is the number of particles in the system. To be
fair, Alder and Wainwright, in their original work, pro-
posed a hydrodynamic argument (the so-called double
vortex) for the diffusion of momentum, which leads to the
t 7?72 tail; mode-coupling theory simply puts dimen-
sionality arguments on a more formal footing.

As pointed out by Zwanzig [4] the long-time tail in the
stress autocorrelation function, whose time integral gives
the GK formula for the shear viscosity 7, could have the
same origin as the nonanalytical dependence of  upon
the shear rate y, which in 2D would be %(y)~Iny.
Many MD simulations have been performed [5-9] to
check these predictions, but the question is not complete-
ly clarified.

In this paper, we report the results of extensive MD
simulations for viscous transport in a 2D fluid. In partic-
ular, we compute the shear viscosity by equilibrium MD
(EMD), using the GK formula, and by nonequilibrium
MD (NEMD), using the subtraction method of Ciccotti
and co-workers [10]. This method allows us to study the
dynamical response at very small gradients, so as to com-
pare linear-regime results with the GK theory.

II. MODEL AND THEORY

We consider the 2D soft-disk system, whose particles
interact by a pair potential of the form ¢(r)=e€(o /r)'?, at
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a mass density of po?/m=0.96 and temperature
kgT/e=1. [For the remainder of this paper, we use as
units of mass, distance, and energy, m, o, and €, from
which the unit of time is obtained: t,=0(m /€)!/2] This
thermodynamic state corresponds to a fluid very close to
the freezing transition, but clearly outside the two-phase
coexistence region [11]. Among possible choices [6,9], we
have chosen this one at the highest density because it has
the longest persistence of memory (see Fig. 1), though if
mode-coupling theory is to be believed, a much lower
density might be preferable, since the tail is predicted to
be entirely kinetic in origin [12]. (However, low-density
MD simulations, especially for continuous potentials, are
very difficult because of the long times between col-
lisions.)

The soft-disk potential is truncated at r=1.51, with a
quadratic-polynomial smoothing between 1.50 and 1.51
in such a way that both potential and force go continu-
ously to zero. The average error incurred in this way, as
a pair of particles with relative velocity equal to the
thermal velocity (kg T/m)'’? suddenly come into range
of each other, is approximately the error in the integra-
tion method, which we have chosen to be the velocity-
Verlet form of Stoermer’s finite central-difference method
(the time step is 6z =0.005).

Planar Couette shear flow is imposed using the sliding
Lees-Edwards periodic boundary conditions [13] and the
so-called Sllod (homogeneous adiabatic deformation)
equations of motion [14] (the name ‘“Sllod” is used be-
cause of its close relationship to the Dolls tensor algo-
rithm). Constant temperature is achieved (removing the
heat generated by shearing) with Nosé-Hoover thermo-
statting [15]:

X;=pxi/mtyyi,

Yi=py/m,
pxi=in_V§pxi_ypyi ’ (1)
ﬁyi=Fyi—V§pyi H

. N
E=v |3 p?/2NmkyT—1]|,

i=1
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FIG. 1. Normalized equilibrium stress auto-
correlation function (Green-Kubo integrand)
for the 2D soft-disk fluid at T=1 for two den-
sities: p=0.69 (N=400 and t,,,= 13000z,
dashed line) and p=0.96 (N=10,000 and
tmax = 50000z, solid line and inset). N is the
\ number of atoms, #.,, is the maximum length
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1
T of time for the equilibrium trajectory, and ¢ is
the time in reduced units t,=0(m /€)'’%. The

where { is the heat-flow variable (connecting the N atoms
with the thermal reservoir) and v is the rate of thermo-
statting. The velocity gradient in the nonequilibrium
shearing trajectory is ¥ =0u, /8y, for planar Couette flow
in the x direction with shearing along the y axis.

Starting at a point selected from an equilibrium trajec-
tory, the shear rate is switched on as a step function at
time zero. A series of experiments is performed and an
ensemble average is taken to obtain the instantaneous
nonequilibrium shear viscosity  as a function of the
shear rate ¥ and number of atoms N (at fixed number
density n =N /V):

(0,,(1)) 2

N(N,y,t)=
where (), symbolizes the ensemble average over a
canonical distribution of initial equilibrium states, sam-
pled by Nosé-Hoover thermostatting; the nonequilibrium
dynamics is implicit in the time dependence of the shear
stress o, which is given as a function of time by

0, =—(1/VZ (pypy /m+Fyy;), (3)

where V' =Nm /p is the volume of the system. As¢— o,
7 approaches a plateau (steady-state) value.

The transient fluid behavior is obtained by averaging
nonequilibrium trajectories (called segments) of time
from O to ?r=2.5 over many independent initial
configurations sampled along an equilibrium trajectory.
We can improve the statistics in the approach of
7(N,v,t) to its asymptotic value by subtracting off the
signal from the equilibrium trajectory which spawned the
nonequilibrium trajectory [10]:

Maxwell relaxation time is TMaxwell
=0.12= Tcollision*
10
t{(e/o?m)!/?
(o,,()—a2 (£)),
N(N,y,0)=—=2 = , @

Y

where ogy(t) is the shear stress evaluated along the equi-
librium trajectory that likewise began at time zero. The
fluctuations in this subtraction-technique signal are in-
herently smaller at short times than the direct calculation
[Eq. (2)], primarily because (especially for small y)
thermal fluctuations in o,, are removed, leaving a signal
proportional to ¥ and noise proportional to y2 For
small y, the shear stress rises to a plateau value in a
fashion that is almost identical to the GK result

__V
no(N,t)——k;?fods<02y(0)02y(s)>0 . (5)

The error in the subtraction plateau value near the end
of time 7#=2.5 begins to grow exponentially, due to
Lyapunov instability. At great expense, this error can be
reduced by increasing the number of segments in the en-
semble, because the error goes like 1/N ;e/gz_ Thus there is
a “window of opportunity’”’ in the subtraction method:
the time ¢ must be larger than the initial decay time, so as
to achieve the plateau value, yet not so large that the
Lyapunov error makes the measurement meaningless.

The aim of these calculations is to see whether or not
the NEMD subtraction results approach the EMD (GK)
results analytically as a function of strain rate, and
whether or not the limit exists as a function of system
size N. The GK plateau value is

Mox(N)= lim nO(N,t);tlim (N7, 0= lim '(N,7,0) .

y—0 y—0

(6)

[The question mark in Eq. (6) indicates an assertion to be
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proved, namely that the NEMD and EMD results con-
verge to the same answer.] If a hydrodynamic limit exists
in nonequilibrium statistical mechanics, similar to the
thermodynamic limit at equilibrium, then as N— oo,
with N /V fixed,

Nox(N—> 00 ) <-1/(N—> w0,y =0,r =) . )

In the next section, we will present both EMD and
NEMD results for the 2D soft-disk dense fluid.

III. RESULTS

The equilibrium stress autocorrelation function is cal-
culated up to very long times, ¢ =10, to follow its long-
time behavior. Therefore it is important to know at least
two characteristic times, the mean collision time and the
sound-wave traversal time in the finite periodic system.
In either case, we need to know the speed of sound c in
our dense fluid, since the mean collision time can be
defined as the mean separation between particles r, (at
density p=0.96) divided by the sound speed
(Teonision=7"0/¢), and the sound traversal time—a poten-
tial source of systematic error in time correlation
functions—is the sidelength of the periodic box L divid-
ed by the sound speed, that is, the time for a sound-wave
disturbance to propagate through the periodic sample

(rp =L /c).
The sound speed can be calculated by [16]
12
_| S|P )
Cy |3 | ’

where the ratio of heat capacities (constant pressure Cp
vs constant volume Cy,) is [17]

Cp T[VX3P/dT),1?
— =1+ ) 9)
Cy NCy,(3P /3p)r

We find this ratio to be 1.59, so that ¢ =9.08. From
this, we compute the mean collision time to be
Teotlision—0- 11. To compare with this, the Maxwell relax-
ation time can be obtained from the time integral of the
normalized shear-stress autocorrelation function [see the
GK expression in Eq. (5)]:

widt<02y(0)Ugy(I)>o _ksT  mex
<(0’2y)2)0 vV ((Ugy)2>o

~0.18 . (10)

TMaxwell

This agrees well with the 1/e-fold time we read off of
Fig. 1, namely, Tpagwen=0.12. In Table I, we report the
sound traversal time for different system sizes. We see no
effect of this traversal time in our results. Perhaps this is
to be expected, since giving a fluid element at the center
of the periodic box a momentum pulse to the right sends
a compressive longitudinal sound wave that passes hor-
izontally through the box and kicks the element from the
rear, while the vertical shear waves cancel at the periodic
boundary.

EMD results for GK shear viscosity as a function of
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TABLE I. Equilibrium shear viscosity 7, (Green-Kubo) in
the 2D soft-disk fluid as a function of the number of atoms N;
tmax 1S the maximum length of time in the equilibrium trajecto-
ry, L is the sidelength of the periodic box of volume V=L?, and
7, =L /c is the sound traversal time (¢ is the sound speed).

N NGk Limax /t() L TL
400 5.58+0.11 50 000 20.4 2.25
900 5.84+0.16 24000 30.6 3.37
1600 5.82+0.16 24000 40.8 4.49
2025 5.80+0.30 6800 54.9 5.06
4900 5.60+0.31 6250 71.4 7.86
10000 5.8110.26 8750 102 11.23

system size N are reported in Table I. These plateau
values were obtained by averaging 7y(N,?) over times
2.5 <t < 10, weighted by the error 1/8n3(N,t). The error
given in Table I is 81y(N,¢=5), which is proportional to
1/t1/2, where t,,,, is the maximum length of time for the
equilibrium trajectory. In Fig. 2, we see that the GK
shear viscosity depends upon system size [18] like 1/N,
but so weakly that the data are consistent with the hy-
pothesis of no dependence. In any event, the infinite-
system size limit can be obtained from a linear least-
squares fit, weighted by #,,,: 7o(N)=5.86(1—17.6/N)
(to be compared with the average value 7=5.6910.07
obtained assuming N independence of the data and using
as weight the length of the trajectory). Thus we find that
the GK value in the hydrodynamic limit for 2D soft disks
at p=0.96 and T =1 is finite: ngg =5.86. A logarithmic
divergence for t— o0 in 7,(N,?) is not observed, since
7no(V,t) remains largely within its statistical error beyond
t=2.5 and up to ¢t =10, as shown in Fig. 3.

NEMD results for the subtraction method are reported
in Table II, where 1(N,y) is calculated as the weighted
average of  n(N,v,t) for 1.8<1<2.5 and
51(N,y)=8n(N,v,t=1.8). We see from Fig. 1 that the
subtraction method is valid for the soft-disk system at
this thermodynamic state, since beyond ¢=1.8 the pla-
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FIG. 2. Green-Kubo values of shear viscosity 7, for the 2D
soft-disk fluid as a function of the number of atoms N. The
straight line is a linear least-squares fit, with weight to each
point given by the length of its trajectory
tmax: Mo=3.86(1—17.6/N), ngx =1o(N — o0 )=5.86.
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FIG. 3. Green-Kubo viscosity with its error
and its average value for N =400, 1600, 4900,
and 10000 for the 2D soft-disk fluid. The
number of time steps of the equilibrium trajec-
tories are those with the largest statistic shown
in Table I.
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teau has been reached, and there is only noise in the
correlation function. The statistical error reported in
Table II for n(N,y) depends upon the number of seg-
ments and the size of the system, according to the rela-
tion [19] 8n(N,y)~1/(NN,)'"2.

Because of the exponential divergence of the perturbed
and unperturbed trajectories, the subtraction method
does not give the response at long times, though the ap-
pearance of the noise can be delayed by increasing the

-number of segments. Calling ¢=min(z: én(N,v,t)
>0.19(N,v)), i.e., the time to reach an error of about
10%, we show values of ¢ in Fig. 4 as a function of the
number of segments N, demonstrating that the cost of
reducing the error becomes exponentially high. The good

t(e/o?m)]

agreement between 74(N,t) and n(N,v,t) for times well
beyond Tyy,,we» @8 shown in Fig. 5, justifies extrapolation
to the plateau times and beyond. The results of Ref. [8],
which were obtained with an analogous technique,
confirm our expectation.

In Table II, our results are compared with those of
Ref. [6], which were obtained with the method of large-
gradient steady-state NEMD [see Eq. (2), where the aver-
age is taken over a long time at the plateau value]. Our
results compare very well with these, which suggests that
the relation n~Iny might only hold over a fixed range of
7, though certainly not down to ¥y =0. From Fig. 6, we
see that in the range 0 <y <0.56, (N, ¥ ) can be well ap-
proximated by a Lorentzian, whose characteristic time is

TABLE II. Nonequilibrium shear viscosity 7(,y ) in the 2D soft-disk fluid as a function of strain rate ¥ and the number of atoms
Nj; N is the number of segments in the subtraction-method ensemble; the results of direct NEMD simulation of Ref. [6] are labeled

(6.

N =400 N =900 N =1600 N =2025 N =4900 N =10000

Y [6] N Nseg n Nseg Ui Nseg n Nseg n Nseg n Nseg
1078 5.11+£2.43 500 5.72+£0.63 4000 4.80+1.59 500
1076 5.09+2.26 500 5.81+1.76 500 6.59+1.55 500
107 5.82+0.55 9000 5.94+0.51 6000 5.22+1.37 700 5.63+0.34 2100
0.01 5.3 5.58+0.33 10000 5.12+0.98 500 5.44+0.71 500 5.48+0.68 500 5.86+0.19 2500 5.87+0.22 990
0.03 5.3 5.63+0.28 2000 )
0.06 5.3 5.34%0.10 4000
0.1 49 5.02+0.12 1000 5.10£0.09 500 5.06+0.04 400
0.183 4.3 4.44+0.07 1000 4.51+0.07 501
0.32 3.9 3.81+0.04 1000
0.56 3.3 3.27+0.04 500 3.34+0.02 500 3.30+0.02 500
1.0 2.8 2.79+0.02 500 2.80+0.01 500 2.80+0.01 500 2.78%+0.02 200 2.8210.02 10
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FIG. 4. Dependence of the error in the response upon the

number of segments with the subtraction method for N =10000
and y=10"* Time equals min(z: 87,(¢)>0.5).
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FIG. 5. Comparison between Green-Kubo and subtraction
shear viscosity with 100 and 2100 segments for N =10000,
y=10"%
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FIG. 6. Fit of n(y) with a Lorentzian for several NEMD re-
sults (N=400); Green-Kubo value at ¥ =0 is also included.
The fit function is (y)=a +b/(1+cy?) and the result to the
fit is a=3.22, b=2.36, ¢=29.3 for 0<y=0.32; thus
nO(N:4’OO): 5. 58! TLorentzian 3.5~ 307collisi0n'
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3.5, or about 30 collision times. This characteristic time
is eminently reasonable, since we might imagine that the
shear-thinning behavior as a function of shear rate would
take many collision times to manifest itself. At small v,
as one expects in the Newtonian regime, 7(N,y ) becomes
independent of ¥, and agrees well with 7,(N). If nonana-
lytic behavior with y were observed, linear response
theory would be cast into doubt; clearly, these results
confirm its validity. Nonanalyticity of this kind has al-
ready been disproved for 3D shearing fluids [20,21].
Therefore we may remove the question marks from Egs.
(6) and (7).

IV. CONCLUSION

In the range of times and system sizes accessible to our
MD simulations, we find no evidence whatsoever of the
long-time tail in dense 2D fluids subjected to planar
Couette shear flow. The tail can well exist but seems nu-
merically irrelevant. By this we mean that divergence
effects, which are sensible only on a time scale of the age
of the universe, are irrelevent to transport behavior.

Moreover, we find no evidence of nonanalytic behavior
of the shear viscosity as a function of shear rate, just as in
the 3D case [20,21]. We conclude that 7, either the
Green-Kubo limit ¥ =0 or the dynamical response y >0,
exists and reaches an asymptotic limit as a function of
system size N in 2D; the dynamical transport coefficient
iszalso analytic in ¥, reaching the linear response limit as

e

Note added. Recently Bill Hoover kindly shared with
us a manuscript that he and Harald Posch had written
[22], showing very similar results to ours and to a previ-
ous recent paper by Hood, Evans, and Cui [9]. The
Hoover results were for a shorter-range repulsive poten-
tial, also in 2D. Their results for n(N,y) can also be
fitted to a Lorentzian in ¥, whose time constant is several
collision times, though they studied only two strain rates.
Nevertheless, the stationary plateau values they
observed—for much larger systems (up to 2.5X10°
atoms)—showed similar limiting behavior of shear
viscosity as a function of system size, that is to say, they
saw absolutely no evidence, either, for a divergence of 7
with N. In their case (error bars of less than 19%), the
asymptotic approach was best fitted by the form
N(N,y)=n(y )1 —const/N'/?) with a goodness of fit of
0.97, though a 1/In(N) behavior gave an equally good fit.
In our case (error bars of about 5%), the goodness of fit
for 1/N was 0.8, vs 0.5 for 1 /N /%,
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